# The Kraaij-Pohlmann stemming algorithm

The Kraaij-Pohlmann stemming algorithm is an ANSI C program for stemming in Dutch. Although advertised as an algorithm, it is in fact a program without an accompanying algorithmic description. It is possible to produce a fairly clean Snowball version, but only by sacrificing exact functional equivalence. But that does not matter too much, since in the demonstration vocabulary only 32 words out of over 45,000 stem differently. Here they are:

 source ANSI C stemmer Snowball stemmer airways airways airway algerije algerije alrije assays assays assay bruys bruys bruy cleanaways cleanaways cleanaway creys creys crey croyden croyd croy edele edel edeel essays essays essay gedijen gedij dij geoff of off gevrey gevrey vrey geysels ysel gey grootmeesteres grootmee grootmeest gròotmeesteres gròotmee gròotmeest hectares hectaar hect huys huys huy kayen kayen kaay lagerwey lagerwey larwey mayen mayen maay meesteres meester meest oppasseres oppasser oppas pays pays pay royale royale royaal schilderes schilder schild summerhayes summerhayes summerhaye tyumen tyuum tyum verheyen verheyen verheey verleideres verleider verleid ytsen yts ytsen yves yve yves zangeres zanger zang

The Kraaij-Pohmann stemmer can make fairly drastic reductions to a word. For example, infixed ge is removed, so geluidgevoelige stems to luidvoel. Often, therefore, the original word cannot be easily guessed from the stemmed form.

Here then is the Snowball equivalent of the Kraaij-Pohlmann algorithm.

```strings ( ch )
integers ( p1 p2 )
booleans ( Y_found stemmed GE_removed )

routines (

R1 R2
C V VX
lengthen_V
Step_1 Step_2 Step_3 Step_4 Step_7
Step_6 Step_1c
Lose_prefix
Lose_infix
measure
)

externals ( stem )

groupings ( v v_WX AOU AIOU )

stringescapes {}

define v        'aeiouy'
define v_WX     v + 'wx'
define AOU      'aou'
define AIOU     'aiou'

backwardmode (

define R1 as (\$p1 <= cursor)
define R2 as (\$p2 <= cursor)

define V  as test (v or 'ij')
define VX as test (next v or 'ij')
define C  as test (not 'ij' non-v)

define lengthen_V as do (
non-v_WX [ (AOU] test (non-v or atlimit)) or
('e'] test (non-v or atlimit
not AIOU
not (next AIOU non-v)))
->ch insert ch
)

define Step_1 as
(
[substring] among (

'{'}s' (delete)
's'    (R1 not ('t' R1) C delete)
'ies'  (R1 <-'ie')
'es'
(('ar' R1 C ] delete lengthen_V) or
('er' R1 C ] delete) or
(R1 C <-'e'))

'aus'  (R1 V <-'au')
'en'   (('hed' R1 ] <-'heid') or
('nd' delete) or
('d' R1 C ] delete) or
('i' or 'j' V delete) or
(R1 C delete lengthen_V))
'nde'  (<-'nd')
)
)

define Step_2 as
(
[substring] among (
'je'   (('{'}t' ] delete) or
('et'   ] R1 C delete) or
('rnt'  ] <-'rn') or
('t'    ] R1 VX delete) or
('ink'  ] <-'ing') or
('mp'   ] <-'m') or
('{'}'  ] R1 delete) or
(] R1 C delete))
'ge'   (R1 <-'g')
'lijke'(R1 <-'lijk')
'ische'(R1 <-'isch')
'de'   (R1 C delete)
'te'   (R1 <-'t')
'se'   (R1 <-'s')
're'   (R1 <-'r')
'le'   (R1 delete attach 'l' lengthen_V)
'ene'  (R1 C delete attach 'en' lengthen_V)
'ieve' (R1 C <-'ief')
)
)

define Step_3 as
(
[substring] among (
'atie'  (R1 <-'eer')
'iteit' (R1 delete lengthen_V)
'heid'
'sel'
'ster'  (R1 delete)
'rder'  (<-'r')
'ing'
'isme'
'erij'  (R1 delete lengthen_V)
'arij'  (R1 C <-'aar')
'fie'   (R2 delete attach 'f' lengthen_V)
'gie'   (R2 delete attach 'g' lengthen_V)
'tst'   (R1 C <-'t')
'dst'   (R1 C <-'d')
)
)

define Step_4 as
(
(   [substring] among (
'ioneel'  (R1 <-'ie')
'atief'   (R1 <-'eer')
'baar'    (R1 delete)
'naar'    (R1 V <-'n')
'laar'    (R1 V <-'l')
'raar'    (R1 V <-'r')
'tant'    (R1 <-'teer')
'lijker'
'lijkst'  (R1 <-'lijk')
'achtig'
'achtiger'
'achtigst'(R1 delete)
'eriger'
'erigst'
'erig'
'end'     (R1 C delete lengthen_V)
)
)
or
(   [substring] among (
'iger'
'igst'
'ig'      (R1 C delete lengthen_V)
)
)
)

define Step_7 as
(
[substring] among (
'kt'   (<-'k')
'ft'   (<-'f')
'pt'   (<-'p')
)
)

define Step_6 as
(
[substring] among (
'bb'   (<-'b')
'cc'   (<-'c')
'dd'   (<-'d')
'ff'   (<-'f')
'gg'   (<-'g')
'hh'   (<-'h')
'jj'   (<-'j')
'kk'   (<-'k')
'll'   (<-'l')
'mm'   (<-'m')
'nn'   (<-'n')
'pp'   (<-'p')
'qq'   (<-'q')
'rr'   (<-'r')
'ss'   (<-'s')
'tt'   (<-'t')
'vv'   (<-'v')
'ww'   (<-'w')
'xx'   (<-'x')
'zz'   (<-'z')
'v'    (<-'f')
'z'    (<-'s')
)
)

define Step_1c as
(
[substring] among ( (R1 C)
'd' (not ('n' R1) delete)
't' (not ('h' R1) delete)
)
)
)

define Lose_prefix as (
['ge'] test hop 3 (goto v goto non-v)
set GE_removed
delete
)

define Lose_infix as (
next
gopast (['ge']) test hop 3 (goto v goto non-v)
set GE_removed
delete
)

define measure as (
\$p1 = limit
\$p2 = limit
do(
repeat non-v  atleast 1 ('ij' or v)  non-v  setmark p1
repeat non-v  atleast 1 ('ij' or v)  non-v  setmark p2
)

)
define stem as (

unset Y_found
unset stemmed
do ( ['y'] <-'Y' set Y_found )
do repeat(goto (v  ['y'])<-'Y' set Y_found )

measure

backwards (
do (Step_1 set stemmed )
do (Step_2 set stemmed )
do (Step_3 set stemmed )
do (Step_4 set stemmed )
)
unset GE_removed
do (Lose_prefix and measure)
backwards (
do (GE_removed Step_1c)
)
unset GE_removed
do (Lose_infix and measure)
backwards (
do (GE_removed Step_1c)
)
backwards (
do (Step_7 set stemmed )
do (stemmed or GE_removed Step_6)
)
do(Y_found  repeat(goto (['Y']) <-'y'))
)
```